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Abstract
Magnetic anisotropy basis sets for the cubic Laves phase rare earth intermetallic REFe2

compounds are discussed in some detail. Such compounds can be either free standing, or thin
films grown in either (110) or (111) mode using molecular beam epitaxy. For the latter, it is
useful to rotate to a new coordinate system where the z-axis coincides with the growth axes of
the film. In this paper, three symmetry adapted basis sets are given, for multi-pole moments up
to n = 12. These sets can be used for free-standing compounds and for (110) and (111)
epitaxial films. In addition, the distortion of REFe2 films, grown on sapphire substrates, is also
considered. The distortions are different for the (110) and (111) films. Strain-induced harmonic
sets are given for both specific and general distortions. Finally, some predictions are made
concerning the preferred direction of easy magnetization in (111) molecular beam epitaxy
grown REFe2 films.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In modelling the properties of anisotropic magnetic com-
pounds, a knowledge of the magnetic anisotropy EA(θ, φ) is
essential. For cubic compounds, the phenomenological form is
often used:

EA(αx , αy, αz) = K1
(
α2

xα
2
y + α2

xα
2
z + α2

yα
2
z

) + K2α
2
xα

2
yα

2
z
(1)

(e g. Bozorth 1961, Coey and Skomski 1993). Here K1 and K2

are temperature dependent anisotropy parameters while αx , αy ,
and αz are direction cosines, with respect to the cubic axes. In
particular, it is easy to show that the relative values of K1 and
K2 determine the direction of easy magnetization, which can
only lie along either a major [001], [011], or [111] cubic axis.

However in Atzmony and Dariel 1976 (herein referred to
as A&D), it was shown that equation (1) is deficient for the
strongly anisotropic cubic Laves phase REFe2 intermetallic
compounds. From numerous 57Fe Mössbauer experiments on
mixed RE(a)x RE(b)1−x Fe2 compounds, A&D obtained spin-
orientation diagrams, in essence setting off the anisotropy of
one rare earth against another (Atzmony et al 1973). In
particular, directions of magnetization were found with non-
major [uuv] or [uv0] easy axes, in conflict with the predictions
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of equation (1). Consequently, A&D modified the anisotropy
to include a third term:

EA = K1
[
α2

xα
2
y + α2

xα
2
z + α2

yα
2
z

] + K2
[
α2

xα
2
yα

2
z

]

+ K3
[
α4

xα
4
y + α4

xα
4
z + α4

yα
4
z

]
. (2)

Further, from Mössbauer data and subsequent analysis
A&D were able to (i) deduce values for the cubic crystal field
parameters B4 and B6, for the differing RE3+ ions, and (ii)
justify the inclusion of K3, by calculating the free energy of
the RE ions for 30 selected angles, followed by a computer fit
to equation (2). However they warned that still higher order
terms might be necessary.

In 2006, this problem was revisited by Martin et al,
who showed that (i) the higher order terms alluded to by
A&D are important, and (ii) the magneto-crystalline anisotropy
of the free-standing REFe2 intermetallic compounds, correct
to second order in the modified Callen and Callen (1965),
Callen and Shtrikman (1965), Callen and Callen (1966) model
of anisotropy (C&C), can be expressed in the multi-polar
form:

EA(θ, φ) = K̃0(T )Y 0
0 (θ, φ) + K̃4(T )YC

4 + K̃6(T )YC
6

+ K̃8(T )YC
8 + K̃10(T )YC

10 + K̃12(T )YC
12. (3)

In this expression for the anisotropy, the K̃n(T )

are temperature dependent parameters, while the YC
n are
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(a) (b)

(c)

Figure 1. Pictorial representation of the cubic Harmonic YC
4 (a) YC

6 (b) YC
8 (c). A constant has been added to avoid negative lobes.

Table 1a. Combinations of spherical harmonics with cubic symmetry up to rank N = 12, after Martin et al (2006).

YC
4 (θ, φ) = Y 0

4 (θ, φ) +
√

5
14 (Y

4
4 (θ, φ) + Y −4

4 (θ, φ))

YC
6 (θ, φ) = Y 0

6 (θ, φ) −
√

7
2 (Y 4

6 (θ, φ) + Y −4
6 (θ, φ))

YC
8 (θ, φ) = Y 0

8 (θ, φ) + 1
3

√
14
11 (Y

4
8 (θ, φ) + Y −4

8 (θ, φ)) + 1
3

√
65
22 (Y

8
8 (θ, φ) + Y −8

8 (θ, φ))

YC
10(θ, φ) = Y 0

10(θ, φ) −
√

66
65 (Y

4
10(θ, φ) + Y −4

10 (θ, φ)) −
√

11·17
10·13 (Y

8
10(θ, φ) + Y −8

10 (θ, φ))

YC
12(θ, φ) = Y 0

12(θ, φ) − 4
9

√
91
11 (Y

4
12(θ, φ) + Y −4

12 (θ, φ)) + 1
3

√
13·17·19

66 (Y 8
12(θ, φ) + Y −8

12 (θ, φ))

combinations of spherical harmonics with cubic symmetry,
listed in table 1a. In essence equation (3) should be viewed as
the expansion of the anisotropy energy in terms of a symmetry
adapted set {YC

N }, which form the appropriate angular Fourier
components for RE ions with cubic symmetry. The higher the

multi-polar order N of the YC
N , the more rapid the dependence

on the angles (θ, φ). This is illustrated in figures 1(a)–(c), for
N = 4, 6 and 8, respectively. In practice, it is sufficient to
terminate the series at N = 12 for the REFe2 compounds.
Finally, we note that while the YC

N of Martin et al (2006) are
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Figure 2. Diagram showing the cubic Laves unit cell (dotted) with
respect to the plane of the (110) film. The [1̄10] and [001̄] axes are in
plane. However the [010] and [100] axes point out of plane at 45◦
with z-axis, in the z–y plane.

Table 1b. Normalized combinations of spherical harmonics with
cubic symmetry up to rank N = 12.

ŶC
4 (θ, φ) = 1

2

√
7
3 YC

4 (θ, φ)

ŶC
6 (θ, φ) = 1

2
√

2
YC

6 (θ, φ)

ŶC
8 (θ, φ) =

√
33
8 YC

8 (θ, φ)

ŶC
10(θ, φ) = 1

8

√
65
6 YC

10(θ, φ)

ŶC
12(θ, φ) = 9

20

√
11
41 YC

12(θ, φ)

orthogonal, they are not normalized. A normalized set ŶC
N ,

and some of their properties, can be seen in tables 1b and 1c,
respectively. For example if K̃4(T ) is positive, the direction of
easy magnetization lies along a 〈111〉 axis.

In passing we note that the multi-polar approach embodied
in equation (3) possesses many advantages over the older
phenomenological approach. In particular, the combinations
of direction cosines in equations (1) and (2) do not represent
a basis set. Indeed, it is this feature which is responsible for
the bizarre changes of sign in the anisotropy parameters K1 in
HoFe2 and K2 in DyFe2 found by A&D. By way of contrast,
Martin et al (2006) showed that all the K̃n(T ) parameters
decay monotonically with increasing temperature, in accord
with the original C&C model of magnetic anisotropy.

In summary, symmetry adapted harmonic sets are the
natural way of expressing the magnetic anisotropy for all
magnetic compounds. But before leaving this section, it is
probably worth remarking that the same information can be
extracted from quantum mechanical calculations, starting from
the crystal field Hamiltonian HCF acting on the RE3+ ions.
This involves just two crystal field parameters B4 and B6, plus
the spin J of the RE (see A&D for details). However this
procedure is excessively time consuming, requiring repeated
diagonalization of (2J +1)×(2J +1) matrices. In practice, it is
mandatory to use the classical form of the magnetic anisotropy
when modelling the properties of magnetic exchange spring
REFe2/YFe2 systems, (Sawicki et al 2000, Dumesnil et al
2000, Bowden et al 2003, 2008).

In summary, the multi-polar expression for the anisotropy
energy of equation (3) can be viewed as the classical

Figure 3. Schematic diagram, showing the corner of the cubic Laves
unit cell (dotted) protruding through the plane of the [111] film. The
[1̄10] and [101̄] and [01̄1] axes are all in plane, making an angle of
120◦ with respect to each other. Note the presence of the out of plane
[111̄] axis, in the z–x plane, at an angle of 71◦ with the z-axis. This
direction plays an important role in the exchange spring driven
spin-flop (Martin et al 2008).

manifestation of the Hamiltonian acting on the RE3+ ion in
question. This, of course, is what is measured during a
magnetic anisotropy experiment.

2. MBE grown films: rotation of the
coordinate system

While tables 1a, 1b and 1c are suitable for the free-standing
REFe2 compounds, they are not, a priori, a suitable choice
for multi-layer films grown by molecular beam epitaxy (MBE).
The situation for (110) MBE films can be seen in figure 2. It
will be observed that both the cubic x and y axes of the unit
cell point out of the film plane at 45◦.

The situation is different for the (111) MBE grown films,
summarized in figure 3. Note that there is three-fold symmetry
about the z-axis, as expected.

In both cases therefore, it is advantageous to adopt a new
frame of reference where the z-axis is aligned along either the
[110] or [111] growth axis. For the (110) films, this can be
achieved using the Euler rotations α = π/4, β = π/2, γ = 0,
with the α rotation performed first. Specifically, for a given
spherical harmonic:

Y m
n (θ, φ) →

∑

m′
Dn

m′,m(αβγ )Y m′
n (θ, φ)

=
∑

m′
e+imπ/4dn

m′,m(β = π/2)Y m′
n (θ, φ) (4)

e.g. Edmonds (1960), Varshalovich et al (1989).
Proceeding according to equation (4) therefore, it can be shown
that the cubic harmonic combinations listed in tables 1a, 1b
and 1c transform according to table 2.

However for the (111) MBE films, it is more convenient
to adopt a frame of reference shown in figure 3. This can
be achieved by setting the Euler rotations: α = π/4, β =
cos−1(

√
1/3). These rotations leave the new z-axis aligned

along the [111] axis, at right angles to the film, with the y-
axis still along the in-plane [1̄10] cubic axis. However the new
x-axis now points along a [112̄] direction. The results of this
rotation are summarized in table 3.

3
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Table 1c. Some properties of the spherical harmonics YC
N (θ, φ) with cubic symmetry up to rank N = 12.

NN Min θ (deg) φ (deg) Max θ φ

YC
4 (θ, φ) 1

2

√
7
3 − 1√

π
54.7356 45 1

2

√
9
π

0 In det.

YC
6 (θ, φ) 1

2
√

2
− 13

16

√
13
π

45 0 1
2

√
13
π

0 In det.

YC
8 (θ, φ)

√
33
8 −0.702 52 27.7903 45 1

2

√
17
π

0 In det.

YC
10(θ, φ) 1

8

√
65
6 −1.321 24 25.0411 0 1

2

√
21
π

0 In det.

YC
12(θ, φ) 9

20

√
11
41 −3.8363 47.6665 23.2349 1

2

√
25
π

0 In det

Table 2. For this table the new (x, y, z)-axes coincide with the [001̄], [1̄10], and [110] directions. Here Y m
n is a shorthand notation for

Y m
n (θ, φ), and Y m

n (s, a) is a shorthand notation for Y m
n (θ, φ) ± Y −m

n (θ, φ), respectively.

YC
4 (θ, φ) → [− 1

4 Y 0
4 − 1

2

√
5
2 Y 2

4 (s) + 3
4

√
5

14 Y 4
4 (s)]

YC
6 (θ, φ) → [− 13

8 Y 0
6 +

√
105
16 Y 2

6 (s) + 5
8

√
7
2 Y 4

6 (s) +
√

231
16 Y 6

6 (s)]
YC

8 (θ, φ) → [ 9
16 Y 0

8 +
√

35
24 Y 2

8 (s) + 25
24

√
7

22 Y 4
8 (s) − 7

8

√
13
33 Y 6

8 (s) + 3
16

√
65
22 Y 8

8 (s)]
YC

10(θ, φ) → [− 1
32 Y 0

10 + 13
32

√
33
10 Y 2

10(s) − 31
16

√
33

130 Y 4
10(s) − 83

64

√
33
65 Y 6

10(s) + 1
32

√
187
130 Y 8

10(s) + 3
64

√
3553

13 Y 10
10 (s)]

YC
12(θ, φ) → [ 839

384 Y 0
12 − 155

192

√
91
66 Y 2

12(s) − 785
2304

√
91
11 Y 4

12(s) + 49
384

√
221
11 Y 6

12(s) + 65
384

√
4199
66 Y 8

12(s) + 5
384

√
29393

3 Y 10
12 (s) +

√
676039
768 Y 12

12 (s)]

Table 3. For this table the new (x, y, z)-axes coincide with the [112̄], [1̄10],and [111] directions. See table 2 for abbreviations.

YC
4 (θ, φ) → [− 2

3 Y 0
4 + 2

3

√
10
7 Y 3

4 (a)]
YC

6 (θ, φ) → [+ 16
9 Y 0

6 + 2
9

√
70
3 Y 3

6 (a) + 2
9

√
77
3 Y 6

6 (s)]
YC

8 (θ, φ) → [ 8
27 Y 0

8 − 16
27

√
35
33 Y 3

8 (a) + 32
27

√
13
33 Y 6

8 (s)]
YC

10(θ, φ) → [− 128
81 Y 0

10 + 16
27

√
22
195 Y 3

10(a) + 88
27

√
11
195 Y 6

10(s) + 8
81

√
7106

65 Y 9
10(a)]

YC
12(θ, φ) → [ 3812

2187 Y 0
12 + 940

2187

√
182
11 Y 3

12(a) + 592
2187

√
221
11 Y 6

12(s) + 40
2187

√
29393

11 Y 9
12(a) + 4

√
676039
2187 Y 12

12 (s)]

In summary therefore, tables (2) and (3) summarize the
magnetic anisotropy sets for the two MBE grown films in
question. Finally, we remark that it would be very difficult to
establish the rotational properties of phenomenological form of
the magnetic anisotropy (see equations (1) and (2) above).

3. The magneto-elastic Hamiltonian

So far the results given above only apply to the free-standing
REFe2 compounds. However, in the case of (110) MBE grown
crystals it is known that as the crystal cools down, the REFe2

film shrinks more than the underlying sapphire substrate.
This differential contraction gives rise to strain components
εxx , εxy etc. For example in (110) MBE grown films, the
dominant strain component is the shear term εxy ∼ −0.05
(Mougin et al 2000). This term gives rise to an additional
rank 2 magneto-crystalline anisotropy which favours out-of-
plane magnetization for ErFe2, and in-plane magnetization for
DyFe2. The strain components for (111) MBE films have
yet to be measured. However, we speculate (see below) that
the important strain components will be the three shear terms
εxy = εyz = εxz ≈ −0.05. On this basis, it is possible to
make some predictions for the five REFe2 (111) MBE films,
with RE = Tb, Dy, Ho, Er and Tm.

The general magneto-elastic Hamiltonian can be written
in the form:

HME = b2εxxα
2
x + b2εyyα

2
y + b2εzzα

2
z

+ b2εxyαxαy + b2εxzαxαz + b2εyzαyαz . (5)

Following Hutchings (1964), Abragam and Bleaney
(1970) and Bowden et al (2006), equation (5) is transformed
to:

HME = Bxx J2
x + ByyJ2

y + BzzJ2
z + Bxy

1
2

(
JxJy + JyJx

)

+ Bxz
1
2 (Jx Jz + JzJx) + Byz

1
2

(
JyJz + JzJy

)
(6)

where:

Bi j =
[

b2εi j

J (J + 1)

]
. (7)

However, in place of the spin operators Jα , we choose
to use the tensor operators Tk

q , which obey the same
transformation laws as the spherical harmonics of equation (4)
(see Bowden and Hutchison 1986, Martin et al 2006).
Equation (6) therefore takes the form:

HME = Bxx

{
1
2

[
T2

2 + T2
−2

] − 1
2

[√
2
3 T2

0 − 2
3 J (J + 1)

] }

+ Byy

{
− 1

2

[
T2

2 + T2
−2

] − 1
2

[√
2
3 T2

0 − 2
3 J (J + 1)

]}

4
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Table 4. The spherical harmonic combinations for a general strain
with respect to the free-standing Laves phase compounds.

Distortion Angular form

εxx (Y 2
2 (s) −

√
3
2 Y 0

2 ) =
η(sin2 θ cos 2φ − 1

2
√

2
(3 cos2 θ − 1))

εyy −(Y 2
2 (s) +

√
3
2 Y 0

2 ) =
−η(sin2 θ cos 2φ + 1

2
√

2
(3 cos2 θ − 1))

εzz 2
√

2
3 Y 0

2 = η 2
3 (3 cos2 θ − 1)

εxy −iY 2
2 (a) = η sin2 θ sin 2φ

εyz −Y 1
2 (a) = η sin 2θ cos φ

εxz +iY 1
2 (s) = η sin 2θ sin φ(η = 1

2

√
15
2π

)

+ Bzz

{[√
2

3
T2

0 + 1

3
J (J + 1)

]}

− Bxy
i

2

[
T2

2 − T2
−2

]

− 1

2
Bxz

[
T2

1 − T2
−1

] + Byz
i

2

[
T2

1 + T2
−1

]
. (8)

In the (110) MBE films, the dominant distortion is the
shear term εxy (Mougin et al 2000). Consequently:

HME(εxy) = −Bxy
i

2

[
T2

2 − T2
−2

]
. (9)

However in [111] MBE grown films, we believe that
the three shear terms εxy, εxy, εxy will be almost equal and
dominant. Thus:

HME(εxy) = −Bxy
i

2

[
T2

2 − T2
−2

] − 1

2
Bxz

[
T2

1 − T2
−1

]

+ Byz
i

2

[
T2

1 + T2
−1

]
. (10)

Nonetheless, in order to cover all possibilities, the
additional magnetic anisotropy for a general distortion is fully
delineated in section 4.

4. First order magnetic anisotropy terms for a
general distortion

Following Callen and Callen (1965, 1966) and Callen and
Shtrikman (1965), the first order change in the free energy due
to a general distortion takes the form:

F ′ = 〈HME〉 =
∑

n,m

B̃n
mDn

0m(ω)
〈
T n

0

〉

= K̃ ′
xx

[
(
Y 2

2 (θ, φ) + Y −2
2 (θ, φ)

) −
√

2
3 Y 0

2 (θ, φ)

]

+ K̃ ′
yy

[
− (

Y 2
2 (θ, φ) + Y −2

2 (θ, φ)
) −

√
2
3 Y 0

2 (θ, φ)

]

+ K̃ ′
zz

[
2
√

2
3 Y 0

2 (θ, φ)

]
+ K̃ ′

xy i[Y −2
2 (θ, φ) − Y 2

2 (θ, φ)]
+ K̃ ′

xz
[
Y −1

2 (θ, φ) − Y 1
2 (θ, φ)

] + K̃ ′
zy i

[
Y 1

2 (θ, φ)

+ Y −1
2 (θ, φ)

]
. (11)

Here the anisotropy parameters are given by:

K̃ ′
i j =

√
π

5
Bi j

〈
T 2

0

〉
E X

(i, j = x, y, z). (12)

Figure 4. The REFe2 Laves unit cell relative to the plane of the
(111) MBE grown film.

Note that (i) the combinations of spherical harmonics
appearing in equation (11) are real, and (ii) every distortion
scales with temperature according to 〈T2

0〉E X , in accord with
the original C&C model of anisotropy. For convenience, the
spherical harmonic combinations appearing in equation (11)
are summarized in table 4.

Using equations (4) and (11) it is relatively straightforward
to calculate the new angular forms for the three geometries
under question. The results are summarized in table 5. Note
that for the distortion proposed in this paper for the (111)
MBE grown films, the angular form of the distortion reduces
to

√
6Y 0

2 (θ, φ), as expected.
In summary, all the information required by a modeller

of REFe2/YFe2 magnetic exchange springs is summarized in
tables (1a–5). In fact, it was the need for such tables that
provided one of the major motivations behind this work. Taken
together, with the multi-polar anisotropy parameters K̃4(T )

etc, of Martin et al (2006), and strain parameters K̃xy(T )

etc, of Bowden et al (2006), the modeller has all the I/P
parameters required both for free standing and (110) and (111)
MBE grown REFe2 films.

5. Directions of preferred magnetization in the (111)
MBE grown MBE films

As mentioned earlier, no x-ray results detailing the distortions
in (111) MBE films are currently available. Nevertheless it is
possible to make progress as follows.

The principle cubic axes can be seen in figure 4. Note
the plane defined by the face diagonals [1̄01], [1̄10], and [01̄1]
(red on-line) lie in the plane of the film, at right angles to [111]
growth axis (blue on-line).

As the MBE grown film cools down, the REFe2 film will
be stretched in the plane of the film. Presumably this will be
accompanied by a decrease in the [111] direction, as the film
tries to conserve volume. However the new [1̄01], [1̄10], and
[01̄1] axes will still be confined to the plane of the film at right
angles to the [111] direction. This information can be used to
partially unravel the distortions that can occur.

5
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Table 5. Angular forms for the six components of the shear strain tensor ε, referred to (a) the free-standing material with z-axis aligned with
the cubic [001] axis, (b) (110)-grown MBE films with the z-axis parallel to the [110] axis, and (c) (111) grown MBE films with the z-axis
parallel to the [111] axis. See table 2 for abbreviations.

z ‖rl [001] z ‖rl [110] z ‖rl [111]
εxx −

√
2
3 Y 0

2 + Y 2
2 (s) 1√

6
Y 0

2 − iY 1
2 (s) − 1

2 Y 2
2 (s) {−i

√
2
3 Y 1

2 (s) −
√

2
3 Y 1

2 (a) − 1
3 Y 2

2 (s) + i√
3
Y 2

2 (a)}
εyy −

√
2
3 Y 0

2 − Y 2
2 (s) 1√

6
Y 0

2 + iY 1
2 (s) − 1

2 Y 2
2 (s) {+i

√
2
3 Y 1

2 (s) −
√

2
3 Y 1

2 (a) − 1
3 Y 2

2 (s) − i√
3
Y 2

2 (a)}
εzz 2

√
2
3 Y 0

2 −
√

2
3 Y 0

2 + Y 2
2 (s) 2

√
2

3 Y 1
2 (a) + 2

3 Y 2
2 (s)

εxy −iY 2
2 (a)

√
3
2 Y 0

2 + 1
2 Y 2

2 (s)
√

2
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Table 6. Strain-induced magneto-elastic parameters in (111) MBE grown films, together with predictions for strain-induced directions of
easy magnetization, and those of the bulk compounds (taken from Bowden et al 1968).

b2 (J m−3) b2 (K/ion) Bxy (K/ion) Easy-axis (Strain) Easy-axis (Cubic)

Tb −6.41 × 108 −2.29 × 103 0.300 In-plane 〈111〉
Dy −6.11 × 108 −2.17 × 103 0.187 In-plane 〈001〉
Ho −2.33 × 108 −0.84 × 103 0.071 In-plane 〈001〉
Er +2.19 × 108 +0.76 × 103 −0.066 Out-of-plane [111] 〈111〉
Tm +5.39 × 108 +1.92 × 103 −0.242 Out-of-plane [111] 〈111〉

If the new face diagonals [1̄01], [1̄10], and [01̄1] are at
right angles to the [111] direction, it is easy to show that:

(
εzz − εxy

) + (
εxz − εyy

) = 0
(
εzz − εxy

) + (
εyz − εxx

) = 0
(
εxx − εyz

) + (
εxz − εyy

) = 0.

(13)

One solution which conserves volume to second order is
given by:

εxx = εyy = εzz = 0

εxy = εxz = εyz = −ε.
(14)

With this particular solution the new length of the three
face diagonals is given by

√
2ao(1 + ε) i.e. an expansion,

while the body diagonal shrinks to
√

3ao(1 − 2ε). If we set
ε = −0.05 we find the values of Bxy etc, set out in table 6.
This table can be compared with table II of Mougin et al (2000)
and table II of Bowden et al (2006), for the (110) MBE films.

Note that the ErFe2 and TmFe2 (111) films are unique
in that both the cubic (bulk) and strain-induced anisotropies
favour out of plane magnetization, along the [111] growth
axis. Recent magnetic measurements on ErFe2 (111) films and
neutron-reflectometry measurements support this conclusion
(Rainford et al 2008).

Finally, it should be mentioned that the three in-plane face
diagonals shown in figure 4, lie in the (112̄0) plane of the
sapphire substrate. Consequently, if the thermal contraction
of the sapphire in this plane (essentially c–a) is uniform, the
conclusion reached above, namely εxy = εxz = εyz = −ε at
room temperature is valid. However Lucht et al (2003) have
shown that for T > 200 K the linear coefficients of expansion
are αa = 6.2(2) × 10−6 K−1 and αC = 7.07(8) × 10−6 K−1.
Thus a small difference in the contraction of the three face

diagonals in figure 3 can be anticipated. At lower temperatures
T < 200 K, nonlinear behaviour will occur. Clearly precise
x-ray measurements will be required for a definitive exposition
of the effect of strain on the magnetic properties of (111) MBE
grown films. For the present therefore, table 6 must serve as a
first approximation.

6. Conclusions

In this paper, symmetry adapted harmonic sets have been set
out for the Laves phase REFe2 compounds, both for free-
standing compounds and MBE thin films grown in either the
(110) or (111) mode. In addition, the general problem of
induced distortions of the cubic lattice, for (110) and (111)
MBE grown films has also been examined in some detail.
The results have subsequently been used to make predictions
concerning the strain-induced preferred direction of easy
magnetization in (111) MBE grown films. In particular it has
been argued that both TmFe2 and ErFe2 are unique, in that both
the bulk crystalline magneto-crystalline anisotropy and strain-
induced anisotropy favour out of plane magnetization.
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